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The continuous transformation of one flow into another of higher or lower energy 
while preserving the potential vorticity of all particles can be accomplished by 
advection with an artificial velocity field. Since isolated extremal energy states are 
stable states, this method can be used to find stable stationary flows on a prescribed 
isovortical sheet. A series of numerical simulations of this method for two- 
dimensional fluids that demonstrates its feasibility and utility is presented. 
Additionally, a corollary to Arnol’d’s nonlinear stability theorems is discussed, which 
shows that there can be a t  most two Arnol’d stable states per isovortical sheet. 

1. Introduction 
In  Vallis, Carnevale & Young (1989, hereafter VCY), we presented a general 

method for decreasing or increasing the energy of a flow while preserving the 
circulation on all material curves. Here we consider applications of this method to 
two-dimensional flows and demonstrate its utility in finding and examining stable 
states. Kelvin (1887) had investigated the stability of stationary flows by imagining 
a process analogous to the one we use. By numerical simulation of our method, we 
can animate the thought experiments proposed so long ago by Kelvin and extend the 
range of practical application of this approach based on energy extremization. 

A concept which will be useful in our discussions is the isovortical sheet. Two- 
dimensional flow is simply the advection of vorticity (potential vorticity in 
geophysical contexts). Thus i t  preserves the potential vorticity of all material 
particles. A useful decomposition of phase space is achieved by grouping all the states 
which can be obtained fFom each other by a smooth, vorticity-preserving mapping 
or, in other words, by advection with some divergenceless but otherwise arbitrary 
flow field for some finite time. A trajectory in phase space must be wholly contained 
in such an isovortical sheet (Arnol’d 1 9 6 5 ~ ) .  Furthermore, since energy is conserved 
in inviscid flow, any trajectory must lie on a constant-energy surface. The isovortical 
sheet, the constant-energy surface, and their intersection are in general all infinite- 
dimensional. However, if the intersection is just a point, it then follows that the state 
represented by that point is a stationary flow. Furthermore, if that point is a 
maximum or minimum of energy with respect to all isovortical perturbations in a 
neighbourhood of it, then i t  represents a stable stationary flow (cf. Arnol’d 1965u, b, 
1966). 

The process which we are considering moves a state point toward ever lower (or 
higher) energy while remaining within the same isovortical sheet. Thus it can be used 
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as a test for stability or a method to search for stable states in the neighbourhood (on 
the sheet) of any given state. The basic mechanism by which this process operates is 
passive advection of potential vorticity by an artificial velocity field -hence the 
name pseudo-advection. Since the change of the vorticity field is accomplished solely 
by advection, all vorticity invariants are automatically preserved. Further, the 
artificial convecting velocity field is adjusted at each moment so that the evolution 
always changes the energy monotonically. By analogy to the metallurgical process 
in which energy is so rapidly extracted from a material that all atomic dislocations 
are frozen in place, this process may also picturesquely be called ‘quenching’. 

An extended discussion of this method and its generalizations to all Hamiltonian 
systems can be found in Vallis, Carnevale & Shepherd (1989) and Shepherd (1990). 
Here we review the case for two-dimensional flow only. The advection of potential 
vorticity can be expressed in a few different useful forms: 

a!7 - + u - v q  = 0,  
at 

2+ J($ ,  q)  = 0, 
at 

P + i . V $  x v q  = 0. 
at 

(1.la) 

( 1 . l b )  

(1 . lc )  

The velocity field, u, is divergenceless and can be written in terms of a stream 
function, $. For most of our discussion the potential vorticity, q, may be left general. 
Some of our examples will be drawn from cases of flow over topography where the 
potential vorticity field is given by 

q = ( + h .  

Here = V2$ is the relative vorticity, and h is a known field independent of time. For 
rotating fluids, - h(z, y) is the fractional change of layer depth scaled by the Coriolis 
parameter. The simplest case of interest is the two-dimensional Euler equation, 
where q is simply the relative vorticity. Note that in the form (1 .1  c ) ,  where 0 is the 
unit normal vector out of the plane, it is clear that the flow will be stationary if and 
only if the contours of $ and q are collinear everywhere in the domain. Thus 
everywhere the stationary stream function is a function of the potential vorticity, 
although that function may be multivalued. 

In what follows, it will be assumed that all boundary integrals arising from 
integration by parts vanish. This will be valid in many circumstances, in particular, 
under the assumption of periodic boundary conditions for all fields (including h, $, 
u, (and their derivatives). With such boundary conditions and the choice (1.2) for the 
potential vorticity, the conserved energy is the kinetic energy, 

(1.2) 

States evolving according to equation (1 . l )  follow the contours of constant energy 
on the sheet. If the explicit u in (1.1) is replaced by some non-divergent but otherwise 
arbitrary velocity field 5, then the evolution would no longer necessarily follow the 
energy contours, because the diagnostic relation between the advecting velocity field 
and q is broken. Nevertheless, the evolution would remain on the sheet because the 
modified dynamics, 

(1.4) 
%l - + 5 * V q  = 0, 
at 
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also conserves q on all particles. If the 8 can be chosen at each moment in such a way 
that the total energy of the fluid must change monotonically, then this equation 
could be used to search for energy extrema on a given isovortical sheet. One way of 
choosing 5 to accomplish this is to take the associated stream function according to 

J = @--J(@,q), (1.5) 
where a is an arbitrary constant. By multiplying (1.4) by @, integrating and using 
(1.5), we then obtain 

With a greater (less) than zero the energy increases (decreases) monotonically. 
Now some caveats are in order. A maximum or minimum energy state on a sheet 

will be stable if it is isolated from other points of equal energy on the sheet. One could 
imagine a line of stationary states of equal energy (i.e. a ridge or valley in the energy 
surface). A priori these states are not necessarily stable because a point of the true 
dynamics can move along the neutral direction. The modified dynamics cannot 
distinguish isolated energy extrema from points on such a line, and so one cannot 
conclude that stability is proven simply by pseudo-advective evolution to a 
stationary point. One might expect that such a line of equal energy points would 
correspond to a symmetry of the system such as translation or rotation, and stability 
of any one of the points on the line might then follow from conservation of a 
momentum rather than a vorticity invariant. Nevertheless, it  remains that 
convergence of pseudo-advection to a point alone does not prove stability 
definitively. Secondly, we note that the topology of the vorticity field is guaranteed 
to be conserved by the modified dynamics only for finite time. If we consider the 
infinite time limit, the modified dynamics can converge to a point just off the sheet 
(i.e. an accumulation point of the sheet) with different topological properties from 
the points on the sheet. This can occur by the creation of thin filaments which act 
to preserve the topology for any finite period but which become vanishingly thin as 
time goes to infinity. In our numerical examples given below, we shall see evidence 
of the need for these two caveats. Further discussion can be found in VCY and 
Carnevale &, Shepherd (1989). 

There are many other formulations which will accomplish isovortical and 
monotonic energy evolution. Powers of the Laplacian can be applied to the Jacobian 
term in (1.5) while maintaining the monotonicity of the energy evolution. Further 
variations include implicit schemes such as 

A method closely related to this latter one was suggested for three-dimensional flow 
as a method for subgrid-scale modelling by C. Basdevant (unpublished manuscript, 
1986). Numerically it is readily implemented by using iteration to approximate the 
time derivatives within $. We discussed all of these schemes in VCY. I n  yet another 
formulation that was previously unnoticed, the term p on the right-hand side of (1.5) 
may simply be dropped. That is we may take 

(1.8) 
- 

@ = -  4 - V")" J($, d, 
The resulting analysis is the same as previously, and in particular the energy change 
is monotonic. 
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We have performed many tests of these algorithms by numerical simulation. 
Comparisons among these algorithms showed that their relative efficiency in 
collapsing the scatter diagrams of q us. @ onto the stable state depends on the specific 
region of the resulting @ = f ( q )  curve considered and the value of the exponent n. 
Overall, all these algorithms behave similarly, and one or the other may be used to 
enhance the rate of convergence to the stable state in question. For simplicity, in all 
of the examples given below only the algorithm defined by (1.5) was used. 

Numerical simulation is necessarily a t  finite resolution. This implies that the 
details of the small-scale motions cannot be accurately reproduced. Codes can be 
devised such that the enstrophy and total vorticity are conserved as accurately as 
desired by adjusting the time step ; however, the other vorticity invariants usually 
cannot be so constrained. Thus with finite resolution, one does not necessarily remain 
on the initial isovortical sheet. A stationary flow must satisfy @ = F ( q )  = dF(q)/dq. 
A simple variational calculation shows that these states are such that the variation 
of the energy vanishes when subject to the constraint that the integral QF fF(q) dxdy 
is fixed (where we have absorbed the Lagrange multiplier in the definition of F). 
Thus if the only invariants constrained during the variation are the enstrophy 
(F = q2) and total vorticity (F = q) then the functional relationship between @and q in 
the extremal energy state is linear. A nonlinear relation between @ and q corresponds 
to a stationary variation subject to constraints other than simply total circulation 
and enstrophy (cf. Bretherton & Haidvogel 1976). The importance of this point for 
statistical mechanics and ergodic theory has been emphasized by Carnevale & 
Frederiksen (1987) and Shepherd (1987). Besides the total circulation and enstrophy, 
the general invariants QF are more or less accurately conserved depending on the 
degree of energy build up at  the highest allowed wavenumber (cf. Matthaeus & 
Montgomery 1981). In  $3, we provide examples with resolution as low as 32 x 32 grid 
points (i.e. the maximum wavenumber equals 16 in our spectral code) that 
demonstrate that one can actually perform valuable experiments even at modest 
resolutions. The ability of simulations of pseudo-advection to reach stationary states 
with nonlinear q us. @ relationships demonstrates that these simulations conserve the 
invariants other than just enstrophy and total vorticity well enough to keep the flow 
nearly on the same isovortical sheet during the ‘quenching’ process. With sufficiently 
high resolution we can remain nearly on the initial sheet and so derive useful 
information about the sheet. 

In all of the examples presented here, we have used a spectral model with periodic 
boundary conditions. Thus, the total potential vorticity is exactly conserved (and is 
identically zero), and the enstrophy is ‘semiconserved’, that is, is conserved as 
accurately as we wish depending on the choice of the size of the time step. The 
numerical method used here for the spatial terms is the dealiasing algorithm of 
Patterson & Orszag (197 1). The Jacobians in (1.1 b )  and (1.5) are both dealised in this 
manner. The time stepping is leapfrog with frequent restarts to avoid computational 
instabilities. The time step must be chosen sufficiently small so that the CFL 
condition based on the pseudo-velocity field is satisfied. The frequency of the restart 
step was about every 20 time steps, which is considerably smaller than the typical 
values used in simulating the quasi-geostrophic equations. There may, of course, be 
much more efficient methods for simulating pseudo-advection ; however, the current 
method proved adequate for the task a t  hand. 

Recently a great deal of attention has been focused on the development of methods 
to distill information from potential vorticity versus stream function scatter 
diagrams for two-dimensional flows (cf. Read, Rhines & White 1986). When the 



points in such a diagram collapse onto functional relationships the flow is in a 
stationary state. For non-stationary flows there is no simple functional relationship 
between vorticity and stream function, but it is useful to ask if the given state 
represented by the scattered points is in some sense near a stationary state (i.e. free 
mode). Verkley (1989) presents methods for explicitly incorporating information of 
a subset of the vorticity invariants into the search for related stationary flows. 
Branstator & Opsteegh (1989) have approached this problem by using a standard 
algorithm to minimize the squared rate of change of the given state while permitting 
as little distortion of the initial stream function field as possible. The drawback of 
that method is that the vorticity invariants are not preserved; however, an 
advantage is that it can find unstable stationary states. In finding stable solutions 
by the use of a set of dynamics which are not those obeyed by the real system our 
work is similar to that of Moffatt (1985). These aspects, and their relation to ideas 
of selective decay (cf. Matthaeus & Montgomery 1980) are discussed in VCY. 

2. Implications of Arnol’d stability for the structure of phase space 
There is little of a precise nature that can be said about the structure of the 

isovortical sheets in phase space. However, if the conditions of the stability theorems 
of Arnol’d (1966) are satisfied for some point, then rather strong statements can be 
made about the structure of phase space about that point and indeed for the entire 
isovortical sheet on which it lies. To put these propositions as clearly as possible, it  
will be useful to recapitulate some of the ideas and results of Arnol’d (1966). He 
provides sufficient criteria for an extreme sort of Lyapunov stability in which the 
associated basins of the stable points cover the entire sheet (cf. McIntyre & Shepherd 
1987). 

As above, we take q = &‘+h and assume all boundary integrals vanish in the 
following calculations. The energy is a functional of $ given by 

. r  

E[$]  = I (V$)2dxdy. 
Y J  

Since the evolution is simply an advection of potential vorticity, we have that the 
generalized enstrophy, 

QF[$l = p ( q )  dxdy, (2.2) 

for any function F ,  is conserved. 
A stationary state of the evolution equation must have the contours of qst and $st 

collinear; that is, there will be a functional relation between qst and $st. It is 
convenient to write this relationship in terms of the ordinary derivative F ( q )  = 
dF/dq of the arbitrary function F .  Thus, 

$st = F’(nst). (2.3) 

Arnol’d’s (1966) first stability criterion is that the function F which defines the 
stationary state must be such that 

for some choice of c and C. Under this condition a very strong statement of the 
stability of $st that does not depend on the perturbations being isovortical can be 
given. In  order to treat non-isovortical perturbations (which can have values of q 
outside the range of qst), we extend the definition of F(q) .  Following Arnol’d (1966) 
we define another function G(q) which is the same as F(q)  for all q in the range of qst. 

0 < c < F < C < C o  (2.4) 
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Outside that range, G can be any function which satisfies the same condition on its 
second derivative as F does (i.e. inequality (2.4)). Next consider the functional 

For any @ this is clearly an invariant of the flow. By comparing the value of this 
functional for and the perturbed field @ = $st + S$ one finds the following two 
inequalities : 

E [ S $ r ]  +$J(&)' dzd!/ G HG"@l-HG[@st/l? (2.6) 
r 

and 

where Sq = q-qst (cf. Arnol'd 1966, Carnevale & Frederiksen 1987). Finally by 
evaluating (2.6) at time t and (2.7) at the initial instant, t = 0, one obtains 

&a@]+ $c (Sq)' < E[b@,l+ $C~(sP.,)' dz dy, I (2 .8)  

with the subscript 0 denoting the initial time. The left-hand side of (2.8) is positive 
definite in the perturbation and vanishes as the perturbation vanishes and thus may 
be used to define a norm or distance between any two functions in the phase space. 
(Actually the functions can disagree on a set of measure zero and still this norm 
would vanish.) Thus any perturbation of the state satisfying Arnol'd's criterion (2.4) 
must remain for all time within a distance as determined by the upper bound given 
in (2.8). The initial perturbed state need not be on the same isovortical sheet as @st. 

In  fact, it can be anywhere in the phase space, and yet the inequality (2.8) is 
guaranteed to hold for all time. Not only is there a basin of stability of finite size 
about the stable stationary state as in nonlinear stability, but the size of the basin 
encompasses all of phase space. 

According to (2.8), any perturbation off the sheet in the vicinity of $st must remain 
near this point for all time even though on another sheet. This does not necessarily 
mean that there is a related stable stationary point (i.e. another isolated energy 
maximum) on the sheets close by because there could be a bifurcation to a ring of 
equal energy points. Nevertheless, i t  does imply that energy contours in the vicinity 
of this point but on neighbouring sheets must also remain close to this point. 

One can also deduce a useful uniqueness theorem from the above inequalities 
(Carnevale & Frederiksen 1987). Equation (2.6) proves that the solution to @ = G'(q) 
where G 2 c > 0 is unique. To see this, assume the contrary. Let @ and kst both be 
solutions. Then the roles they play in (2.6) are interchangeable. The right-hand side 
of (2.6) is antisymmetric under interchange of @ and kSt, but the left-hand side is 
always non-negative. The only possible conclusion is that S@ vanishes, and hence 
there can be only one solution. 

If one restricts attention to a particular sheet, then it can be shown that there is 
a t  most one Arnol'd stable minimum-energy state on any given sheet. If $ = $st + S$ 
is on the same sheet as @st, then from (2.6) we obtain 

4 w i  G ~[~i--rtl. ,i .  12.9) 

This follows because the values of QG are the same for all points on the sheet (and 
incidentally equal to QF since the range of q is the same for every point on the sheet). 
Thus @st is an isolated minimum of energy. The proof of uniqueness proceeds by 
considering one state to act as the perturbed form of the other, and then 
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interchanging their roles. The antisymmetry of the right-hand side of (2.9) implies 
that, the difference between these states must vanish. 

A similar argument can also be made with Arnol’d’s second stability criterion. If 

0 < b < -F” < B  < 00, (2.10) 

then assuming isovortical perturbations, it follows that 

E[$l -E[$stl E[WI - 3 /(S!?)’. (2.11) 

According to Arnol’d’s second criterion nonlinear stability is proven if (2.10) holds 
and the right-hand side of (2.11) is negative definite. Under those circumstances the 
state $st is in that case an isolated energy maximum. For periodic boundary 
conditions, the right-hand side of (2.1 1 )  becomes 

tC k2( 1 - bkZ)IS$12. (2.12) 
k 

Taus for Arnol’d’s stability in this case, we would need b > 1,  that is, max d1L/dq < 

By the same type of arguments given above there can be a t  most only one state 
satisfying Arnol’d’s second stability criterion on a given sheet. Note, however, that 
there is nothing to preclude having one state satisfying the first criterion and one 
satisfying the second criterion (i.e. one minimum-energy and one maximum-energy 
Arnol’d stable state) on the same sheet. 

These conclusions do not preclude the existence of other stable states, even 
nonlinearly stable states, which do not satisfy the Arnol’d criteria. We are being very 
strict in our interpretation of Arnol’d’s criteria, and in obtaining the above results 
we have assumed that the boundary conditions on the problem are such that the 
integral 

(2.13) 

- b < - l .  

vanishes. This will be the case if $ and 81) satisfy periodic boundary conditions, or 
on the infinite plane if they vanish sufficiently rapidly a t  infinity, or on a closed 
boundary if $ is a constant and S$ has zero circulation. However, under more 
general boundary conditions exceptions to our conclusion may be found. 

There is a direct connection with our results and the conclusions of Andrews 
(1984). A generalization of Andrews’ (1984) theorem is that solutions satisfying 
Arnol’d’s (1966) criteria must have the same symmetries as the physical specifications 
(i.e. boundary conditions, topography, Coriolis parameter, etc.) of the problem (see 
Ripa 1987). Andrews’ theorem follows from the uniqueness proof given above. That 
is, if there is a symmetry in the problem from which one could create a family of 
equal-energy solutions by shifts in the symmetry direction, then the uniqueness 
proof would be contradicted. Thus we must conclude that a state satisfying Arnol’d’s 
criteria cannot be used to create such a family; that is, the solution must have the 
symmetry in question. In  the case of flow over topography, the Arnol’d stable states 
will have the same symmetries as the topography. For situations with no topography 
there is nothing to fix the phase, except perhaps other invariants which cannot be 
expressed as functionals of the vorticity. Thus there may be a continuum of 
nonlinearly stable equal-energy states with the members differentiated by the 
specification of another invariant not accounted for in the Arnol’d stability proof (for 
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further discussion see Ripa 1987; Carnevale & Shepherd 1989; Chern & Marsden 
1990; Sakuma & Ghil 1990). 

3. Pseudo-advection of flow over topography 
Our first set of examples involves flow over topography. For an arbitrary choice 

of F ,  a solution to $ = F ( q )  can be constructed if there is freedom to choose the 
topography. First invert this relation to write it in the form 

(3.1) 

Then choose $ to be any function satisfying the relevant boundary conditions. 
Finally choose h to  satisfy (3 .1) .  This device is used in this section to provide the 
examples of nonlinearly stable flows that we wish to consider. 

q E V 2 $ + h  = F--l($). 

For our first example, we consider a stationary state satisfying 

Qst = 9%. (3.2) 

For this state, we have that F is everywhere positive. Therefore, for an arbitrary 
isovortical perturbation this state must obey (2.9), which bounds the energy of the 
perturbation. 

If the stream function satisfying this cubic relation is taken to  be 

$ = sinxsin y, (3.3) 

then it follows that = Vz$ = - 2 sin x sin y . (3.4) 

We then choose h such that (3.2) is satisfied, giving 

This stable flow is illustrated in figure 1. 
Next we created a non-stationary state isovortical to this stationary one by 

advecting it with a randomly generated static velocity field. Then we allowed the 
modified dynamics to act with a < 0 (i.e. monotonically decreasing energy) to test if 
the unperturbed stationary state could be recovered. Depending on how poorly the 
vorticity invariants are conserved, the quenching may take us to  a minimum energy 
state on a different sheet. If of all the vorticity invariants only the enstrophy is 
adequately conserved, then quenching would take us toward the state of minimum 
energy for a given enstrophy which is always such that q is a single-valued linear 
function of 9. The absolute minimum energy state with the same enstrophy as this 
cubic state satisfies the linear relation q = 0.645$ as determined by a variational 
calculation (cf. Bretherton & Haidvogel 1976 ; Carnevale & Frederiksen 1987). 

Scatter plots of q vs. $ are useful in following the evolution of the flow and 
determining the degree to which a stationary state is reached. A non-stationary state 
is characterized by a scatter of points in a 9-q  plot, while a stationary state is 
represented by a curve since then q is a function of 9. In figure 2, we show the q-$ 
relation for the cubic state, the linear state and the scatter plot for the perturbed 
initial condition. The question was : toward which relation would the modified 
dynamics take the scattered points - q = $3, q = 0.645$, or some other function. The 
resolution in this demonstration is just 32 x 32. Figure 3 shows the evolution of the 
q us. $ scatter plot as the energy is smoothly drained away, and indeed the evolution 
is toward the cubic relation. In  the last panel the theoretical limit is drawn through 
the scatter points. Figure 4 shows the evolution of the q-field for this experiment. 
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FIGURE 1 (a+). Contour plots of $, h, and q for the unperturbed, stable, stationary state defined 
by q = $3 and h = 2 sin x sin y + sin3 xsins y. (Dark, dotted, and light contours represent positive, 
zero and negative values in contour plots.) (d )  Scatter plot of q us. $ ( -  1.2 < q < 1.2, - 1.5 < 
$ < 1.5). 

Finally, figure 5 shows that the energy asymptotes in time to the value of the 
unperturbed cubic state, which is considerably greater than the absolute minimum 
energy over all states with the same enstrophy. This demonstrates that it is feasible 
to use the numerical finite-resolution version of the modified dynamics to explore the 
phase space of two-dimensional flows. 

Note that according to the discussion given in $2, the stability of a stable state 
with $ = F ( q )  is related to the conservation of energy and QF = $ F(q) dxdy. In other 
words, the state in question can be found by extremizing E with the constancy of QF 
the only constraint. For the present example, P’(q) = qi and the success of the 
quenching must rely on the adequate conservation of the corresponding invariant 
Q ,  = $$qsdxdy. During the quenching this quantity was constant to within better 
than 0.5%. Other quantities were also checked; for example, the integral of q to the 
eighth power was preserved with less than 1 YO error. These accuracies even a t  very 
low resolution are attributable to the low wavenumber of the basic state and the 
initial perturbations. In  this simulation the amount of excitation at  the highest 
wavenumbers does not become sufficient to create significant errors (cf. Matthaeus & 
Montgomery 1981). 
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I I * I 

FIGURE 2. Scatter plot showing the unperturbed q = +h3 state (continous line), the randomly 
advected perturbed state (dots), and the state of minimum energy constrained only by enstrophy, 
q = 0645+h (dashed line) (range: as in figure 1). 

I. 

I 

,i 

f 
i 

FIQURE 3. Scatter plots of q vs. $ showing the quenching (with a = -0.2) of the perturbed state 
back toward the unperturbed q = fi3 state (range: as in figure 1). Time proceeds left to right, top 
to bottom with t = 0, 2, 4, 6, 10, 60. 
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FIQURE 4. Contours of the potential vorticity field during quenching with same time sequence 
BS in figure 3. (Contour interval 0.2; sign coded as in figure 1.) 

Technically, the stationary state used in the current example does not satisfy the 
criteria of Arnol’d (1966) for nonlinear stability because the slope, dll/-/dq of the q us. 
4 relation is infinite at  a point. It is not clear what form of instability this might 
allow because the bound (2.6) with c = + holds. Thus both the energy and enstrophy 
in the perturbation field are bounded by the size of the initial perturbation. What we 
cannot show here is that the size of this bound goes to zero as the initial perturbation 
energy and enstrophy become vanishingly small. In any event, the presumably 
nearby stable stationary state q = 43 +all/ where a is a very small positive constant 
is essentially indistinguishable from the state with a = 0 for the simulation purposes, 
and does satisfy Arnol’d’s criteria. It may be that the numerical simulation of 
quenching takes us to such a state on a nearby sheet and not actually to the q = 
state which may have a possible nonlinear instability. In fact, we have performed a 
series of experiments in which the initial perturbed state is taken )further and further 
away from q = I+h3 isovortically. The final state toward which the simulation relaxes 
is further and further from the q = 43 state, but could be described by a state of the 
form q = 11/3 +all/ with the size of a increasing with the size of the initial perturbation. 
We might expect that a t  low resolution the greater the perturbation the larger will 
be the deviation from the initial sheet during the perturbing and quenching 
processes. 

We have also checked relaxation to the linear state q = 0.645$ with the same 
enstrophy as the cubic relation and for the same topography (3.5). This state was first 
perturbed by random advection to a state of higher energy, then pseudo-advection 
with energy decaying returned it to the linear relation. Also we have demonstrated 
such relaxation to the maximum energy state restricted only by that same value of 
the enstrophy. That state is q = --0.392ll/, which is Arnol’d stable (maxdll//dq -C 

In further simulations of flow over topography, we tested relaxation to a variety 
- 1). 
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FIQURE 5. Quenching decreases the energy monotonically from the energy of the perturbed state 
toward its asymptotic value, which is the energy (dashed line) of the stable q = $3 state (i.e. the 
minimum energy on the sheet). The minimum energy constrained only by the enstrophy, Q ,  in this 
experiment is also shown (dotted line). 

of additional polynomial relationships between q and $ of degree up to five. The 
results were entirely analogous to those presented above. This also included 
examples of increasing energy to reach maximum energy states (e.g. the Arnol’d 
stable q = -0.i($3+$)). 

On a sheet where there is both a maximum and a minimum energy Arnol’d stable 
state, it may be possible a t  infinite resolution to move from one to the other by 
pseudo-advection. In  one experiment, we chose an initial condition that is an Arnol’d 
stable state of maximum energy. Specifically we took $ = - &J, $ = sin x sin y, and 
chose the topography accordingly. Since this is a maximum energy state, it is 
unstable to pseudo-advection with energy decaying. In figure 6, we show that the 
quenching of this state proceeds first by small-scale instability. The large-scale 
potential vorticity breaks up into small pieces which reassemble into a pattern of a 
phase opposite that of the initial condition. In  this case, the flow evolves from a state 
of negative correlation between q and h to one of positive correlation. The final state 
is definitely Arnol’d stable because the slope (i.e. P”) is positive everywhere. In such 
cases where the intermediate states have energy dominantly a t  the small scales, the 
vorticity invariants other than enstrophy are not well conserved in the simulation (as 
is clear from the scatter plots and potential-vorticity contour plots). Thus this low- 
resolution (32 x 32) simulation is not accurately remaining on a given isovortical 
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FIQURE 6. Energy is withdrawn from the maximum energy state q = -$+ by pseudo-advection 
(with a = -0.2) to reach a minimum energy state. The potential vorticity contour plots (lower row) 
show the time sequence (left to right) with the original pattern breaking up into small parcels, 
which reassemble into a field anticorrelated with the initial condition. (Dark/light contours 
represent positive/negative values in contour plots ; zero contour is not drawn ; contour interval 
0.25.) The q-+ scatter plots (upper row) show the transformation from a negative slope to a positive 
slope state (vertical: - 1.4 < p < 1.4, horizontal: - 1.5 < $ < 1.5). 

sheet, but nevertheless it illustrates the concept of moving from one Arnol’d state to 
another. 

The examples presented above were performed with unperturbed flows that 
occupied only the gravest mode of the box. This is not essential to the performance 
demonstrated, and these experiments have been repeated a t  higher resolution and 
with the unperturbed state representing a wavenumber-four flow. To emphasize that 
these results can be observed with basic flows a t  small scales, we include a case of 
quenching flow over an isolated mountain. In this case the unperturbed stream 
function has a Gaussian profile : 

with standard deviation, cr, only 5 YO of the length of the side of the computational 
domain. For the functional relationship between @ and q,  in contrast to the previous 
choices of odd order, we choose a quadratic: 

@ = exp ( -r2/2cr2) (3.6) 

Since + ranges from 0 to 1, the slope here is always strictly positive, and hence this 
flow is Arnol’d stable. Based on these choices, the underlying topography for this 
stable state is 

h = exp( -$)+2(7+2-$)exp( 1 c r 2  -&). 
Again the perturbed state is created by advection with a random but static velocity 
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FIGURE 7. Pseudo-advection of flow over an isolated hill. (a )  The perturbed initial-condition 
potential-vorticity field and ( b )  the potential vorticity after pseudo-advection back toward the 
minimum energy unperturbed state. (Contour interval 0.4, dotted curve corresponds to q = 0) ( c ,  
d )  The corresponding potential q us. $ scatter plots; (d) also has the theoretical limit for the 
unperturbed state q = $* +0.5$ as a continuous curve (vertical: -0.1 < q < 1.6, horizontal: 
-0.1 < 8) < 1.1). 

field. The simulation was performed a t  resolution 64 x 64. The initial perturbed state 
and the state after a period of pseudo-advection are shown in figure 7. As the 
quenching proceeds the contours of q become more and more aligned with the 
unperturbed state. In  figure 7 ( b ) ,  all but the zero contour are close to the 
unperturbed state (the area mean value has been subtracted from the field). The zero 
contour still has some noticeable distortion from a circle as is also evident from the 
scatter plot. Further quenching is necessary to bring all of the small q-values into 
alignment ; however, the trend is clear. Note also that the highest q value is about, 5 YO 
higher than in the unperturbed field but higher resolution and smaller time step 
could resolve this. 

4. Pseudo-advection of vortices on a flat plane 
Here we turn to the question of the pure two-dimensional problem; that is, 

vortices on a flat plane. For conceptual simplicity, the quenching of patches of 
constant vorticity is ideal and most of the explicit examples that we shall present in 
this section are of that type. However, this can lead to numerical difficulties in that 
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vorticity discontinuities are only poorly resolved in the simulations and consequently 
t,he accuracy in terms of remaining close to  the original sheet has been sacrificed. In 
our present simulations with vorticity discontinuities, we cannot claim accurate 
conservation of the integrals of vorticity to high powers (i.e. about 4 and above). 
Nevertheless, we do claim that the phenomena illustrated are qualitatively 
representative of the infinite-resolution behaviour. This is confirmed in part by 
simulations with smoothed vorticity distributions which qualitatively demonstrate 
the same phenomena but with higher accuracy in terms of the conservation of the 
vorticity integrals. Finally, we shall end this section with an example of quenching 
a smoothly distributed, randomly generated vorticity field. 

4.1. Energy minimization : Kelvin’s sponge 
Kelvin (1887) considered the problem of a constant vortex patch surrounded by 
irrotational fluid in a finite container with slip boundary conditions. Since the 
velocity a t  any point is obtained by the linear superposition of the effects of all the 
vorticity elements, the energy can be lowered by arranging the vorticity elements so 
that the velocities they contribute interfere destructively in as much of the domain 
as possible. We can imagine this energy minimization proceeding smoothly by 
producing fine filaments of vorticity whose effects tend to cancel in the region in 
between. The homogeneous structure of fine filaments which forms in this process 
Kelvin has dubbed a ‘vortex sponge.’ I n  his words ‘The consumption of energy still 
goes on, and the way it  goes on is this: the waves of shorter length are indefinitely 
multiplied and exalted till their crests run out into fine laminae of liquid, and those 
of greater length are abated. Thus a certain portion of the irrotationally revolving 
water becomes mingled with the central vortex column. The process goes on until 
what may be called a vortex sponge is formed; a mixture homogeneous on a large 
scale, but consisting of portions of rotational and irrotational fluid, more and more 
finely mixed together as time advances. The mixture is altogether analogous to the 
mixture of the white and yellow of an egg whipped together in the well-known 
culinary operation.’ 

For the case of periodic boundary conditions with no topography field and zero net 
relative vorticity, the vorticity patch is drawn into finer and finer filaments which are 
intermingled with the filaments of the oppositely signed background vorticity. The 
filamentation proceeds in such a way as to make the net vorticity in any finite 
subdomain ever smaller. Consequently the velocity will tend to zero everywhere. In 
our experiments, we confirm this intermingling of oppositely signed vorticity 
filaments with the energy of the flow tending to zero under quenching. At finite 
resolution there is actually a lower limit on the energy given by the enstrophy 
divided by the largest wavenumber squared, but typically this is a very small energy. 
Also, at finite resolution one cannot observe extremely fine filamentation because of 
numerical reconnection. Nevertheless, the trend toward a vortex sponge is evident in 
figure 8, where we start with a circular vortex patch of positive vorticity surrounded 
by a field of equal area and equally strong constant negative vorticity. The figure 
shows only the evolution of the zero-vorticity contour. In actuality, strict bimodality 
of the vorticity field cannot be maintained at finite resolution and a smoothed step 
distribution results as will be illustrated in the next section. 

We have repeated this calculation with a variety of initial monopolar vortices 
including conical and Gaussian profiles. In each case, there is a continual tendency 
toward filamentation and homogenization with the energy continually decreasing. 
These simulations confirm the conclusions of Kelvin’s (1887) thought experiment. 
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FIQURE 8. Kelvin's Sponge. Decreasing the energy of a radially symmetric vortex by quenching 
results in the formation of finer and finer scales. The simulations show a tendency toward complete 
homogenization. This is illustrated in these plots of the zero relative vorticity contour at sequential 
stages in the evolution (time proceeds from left to right, top to bottom). 

Furthermore, they suggest that to find non-trivial stable states on the flat plane we 
should consider the action of increasing energy toward a maximum energy state. 

4.2. Energy maximization 
We know a priori that  monotonic energy enhancement cannot create arbitrarily 
large energies because there is a bound that can be deduced from enstrophy 
conservation. For periodic boundary conditions in a square of side 2x, we have, 

where the wavenumbers are integer with minimum value k = 1. The equality is 
realized only when $ is composed solely of the gravest modes. In  that case, the 
relationship between fi and 6 is linear. The maximum energy achievable (i.e. on a 
particular sheet) will typically be lower than Q because the other vorticity invariants 
can restrict its value further. 

The examples given below have been selected as representative of classes of basic 
phenomena which may be observed in the quenching process. These will aid in 
predicting and interpreting the outcome of quenching in more complicated situations. 

Since there is no topography in these examples and nothing in the boundary 
conditions to fix the phase of the flow, i t  is clear that  each case converges to a state 
which is part of a continuum of equal energy states. The choice of phase must be 
determined by information contained in the initial conditions and preserved through 
some invariant apart from the vortical invariants which define a sheet. 
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FIGURE 9 (u-d). The evolution of the vorticity field under continual energy enhancement by 
pseudo-advection of two like-signed vortex patches. The stronger vortex is engulfed by the weaker 
as they move to the maximum energy state of concentric circular rings of decreasing vorticity. 
(Contours drawn at  vorticity values 0.3 and 0.6.) (e, f) q 2)s. $ scatter plots for the initial and final 
states (vertical: -0.4 Q q < 1.2, horizontal: -0.7 Q + Q 0.3). 

Like-signed vortex patches 
If an asymmetric vortex on a flat plane is subjected to energy increase, the flow 

tends to axisymmetrize. Kelvin (1887) predicted that energy enhancement will result 
in concentration of vorticity in concentric rings decreasing in strength from the 
centre. We have confirmed these predictions through numerical simulation of 
quenching on a variety of asymmetric-continuous and piecewise-continuous 
distributions of vorticity. We presented an example of this in VCY, where we took 
a single, simply connected, irregular patch and followed its evolution under 
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quenching with energy increasing, The irregular patch smoothly deforms into a 
circular patch as expected. The next example also shows this axisymmetrization 
under quenching as well as the formation of concentric rings of decreasing strength. 
Furthermore, the initial condition is chosen in such a way that the loss of certain 
topological properties will also be illustrated. We take two disjoint, like-signed, 
constant-vorticity patches of different strength. Under quenching with energy 
increasing, the vortices approach, then the weaker vortex engulfs the stronger (figure 
9). The two-patch vortex then slowly axisymmetrizes reaching the final state of 
concentric rings with the strongest vorticity in the interior as predicted. 

In spectral simulation of finite resolution (here 128 x 128), the vorticity of these 
patches cannot be strictly bimodal. The scatter plot of 5 us. @ in figure 9 shows the 
strong fluctuations about the intended constant-vorticity levels. During the 
quenching these fluctuations are redistributed to make a nearly monotonic 
distribution of vorticity decreasing outward from the centre of the final composite 
vortex. This is shown in the scatter plot a t  time t = 40 (note that the stream function 
increases monotonically with the radius from the centre). The thickness of the curve 
shown in the scatter plot would presumably continue to decrease if the quenching 
were continued. Another point to note is that there is a change of about 10% in the 
maximum value of 5 on the grid, a consequence of finite resolution. 

As predicted, the presence of discontinuities (i.e. small horizontal scales) in the 
patch experiments makes it difficult to preserve integrals of 5". In  this case for 
n = 4 the variation was 4 % while for n = 8 the variation was 30 %. The time step was 
small enough to keep the variation of the enstrophy to within 0.2%. The important 
point is that the energy, which over the course of the quenching approximately 
doubles, asymptotes a t  a value more than 25% less than its maximum value 
predicted only from enstrophy conservation. Clearly invariants other than just the 
enstrophy continue to be felt even in these patch simulations. 

This simulation illustrates the tendency toward a topologically inaccessible state 
as discussed by Moffatt (1985). Divergenceless advection cannot create, break, or 
destroy contours of vorticity in finite time. Therefore, during quenching at infinite 
resolution the topology of two disjoint patches must be maintained. Thus, ideally a 
thin filament cuts through the outer ring as it surrounds the inner patch. As the 
quenching proceeds the filament would become infinitesimally thin, and the total 
remaining evidence of the initial disjoint topology would be a one-dimensional line 
cutting through the outer ring. If the initial state had the stronger vortex actually 
embedded inside the weaker patch, then the final structure would be identical save 
for this line. Thus, in general, the t = co states are topologically equivalent to the 
initial states only to the extent that the existence of such infinitesimally thin 
filaments is admitted. Of course, in finite-resolution simulations, once the thickness 
of this line is below the gridpoint separation, numerical recombination occurs, 
destroying the line entirely. Thus topological properties which can be maintained 
only through the presence of infinitesimally thin lines cannot be maintained in our 
simulations, and in particular in the present simulation the final state is indeed 
indistinguishable from the result for the stronger patch initially embedded in the 
weak patch. (See also figure 11 for another example of this numerical reconnection.) 

Oppositely signed vortex patches 
In figure 10, we show the interaction of two oppositely signed vortices as affected 

by quenching. Maximization of energy will require maximal separation of the 
vorticity of opposite sign and the concentration of vorticity of each sign with the 
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FIGURE 10. Under continual energy increase, oppositely signed vortices repel. This figure is a 
composite showing the relative vorticity field a t  four sequential points during the evolution under 
pseudo-advection, The shaded (white) area within each circle represents negative (positive) 
vorticity. The numbers 1 ,2 ,3 ,  and 4 represent the times t = 0, 34, 80, and 292.5 respectively. Only 
the -0.4 and +0.4 contours are drawn. 

FIUURE 11. Initially a circular patch of negative vorticity is surrounded by a positive annular 
patch. Increasing the energy results in a maximum energy state with both circular vortices a t  a 
maximum separation. The intermediate stage shows the tendency to fine-scale filamentation. As 
discussed in the text the initial and final states are not topologically equivalent (t = 0, 1 ,  4.5, 30). 
(Contour interval 0.4; sign coded as in figure 6.) 
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FIQURE 12. As in figure 11, except that the evolution is according to the true dynamics 
(dE/dt = 0). The annulus undergoes a double-dipole instability (t = 0,44,48,52). Final time t = 52. 
(Contour interval 0.8; sign coded as in figure 6.) 

strongest vorticity in the centre. Thus we anticipate oppositely signed vortices under 
quenching will repel each other and attempt to reach the largest separation possible. 
This tendency is clearly evident in figure 10. On an infinite plane we would anticipate 
the two equal but oppositely signed vortex patches to continue to separate forever, 
with each becoming more axially symmetric. However, in the periodic domain the 
repelling vortices soon fall under the influence of the vortices in the neighbouring 
cells, and a stable array is approached. 

Concentric patches of oppositely signed vorticity 
In this example, a negative circular patch is surrounded by a concentric ring of 

positive vorticity and the whole is on a field of zero vorticity. By the previous 
example, we expect the pseudo-advection will have the negative and positive 
vorticity repel and tend toward a state with the positive and negative vorticity 
regions maximally separated. In fact, this is what is observed (figure 11) .  The 
repulsion of the isotropic annulus equally in all directions results in an ablation of the 
annulus, which breaks into small-scale structures that then recombine to form a 
circular vortex maximally distant from the central negative vortex. In similar 
experiments where the negative core is off centre, the process appears more like an 
expulsion of the negative vortex rather than this isotropic ablation of the positive, 
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FIGURE 13. The pseudo-advection of a random initial field. The initial condition is generated with 
random phases and energy equipartitioned in modes with wavenumbers between 1 and 8. 
Continually enhancing the energy isovortically results in two large-scale eddies which do not 
collapse into the lowest wavenumber and have a nonlinear q-$ relation. (Contour interval 0.8; sign 
coded as in figure 6.) 

but nevertheless the result is the same. We emphasize that the instabilities of the 
modified dynamics with dE/dt =+= 0 have nothing to do with real instabilities. In 
figure 12, we show the evolution of the real (dE/dt = 0) instability that occurs for the 
same initial condition used in figure 11. This instability takes the form of double- 
dipole formation (Flier1 1988) and has no similarity to the ablation which occurs 
during quenching. 

Random initial conditions 
As our final example, instead of patches we use a continuous relative vorticity 

field. The initial field is created by equally populating all modes up to  wavenumber 
8 with randomly generated phases. Thus the initial vorticity contour plot primarily 
shows an irregular assortment of eddies of roughly wavenumber 8. From the insight 
formed in the patch experiments discussed above, we could anticipate that the stable 
configuration isovortical to this one is two large-scale monopoles of opposite sign and 
maximal separation. The exact form of the q-@ relation will depend on the details of 
the initial vorticity distribution. As the quenching proceeds the like-signed vortices 
merge, the resulting large-scale monopoles do move apart to their equilibrium 
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positions, and the q-$ plot shows a nonlinear relationship (figure 13). Note that if 
enstrophy were the only constraint during the energy increase, then the q-$ relation 
would become linear and only the largest wavevectors would be exited. 

5. Discussion 
We have demonstrated the feasibility of numerically simulating the pseudo- 

advection algorithms of VCY as a means of exploring the structure of the isovortical 
sheets in the phase space of two-dimensional flows. A further line of investigation 
might be to use these algorithms in the program such as followed by Branstator & 
Opsteegh (1989); that  is, take actual atmospheric (or other source) data for the 
instantaneous flow field of a non-stationary flow and apply quenching to determine 
whether there is a nearby stationary flow that can be identified as influencing the 
evolution of the given flow. 

There is an obvious drawback in the algorithms investigated here. In  the current 
formulation, pseudo-advection can lead only to stationary states. This rules out 
evolution toward uniformly translating or rotating form-preserving structures such 
as modons or rotating ellipses. Some way needs to be found to either incorporate the 
effects of translation and rotation into the algorithm explicitly or better still to find 
an algorithm which automatically determines the correct reference frame. Such a 
development would greatly enhance the usefulness of pseudo-advection (for a further 
discussion of these points, see Shepherd 1990). Also the effects of boundary 
conditions other than periodic need to be investigated. 
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